

The Slothful Ways of D-Bus

Will Thompson
Collabora

Pre-emptive thanks:

Robin Bate Boerop
Alban Crequy

“Slow”

● How slow?
● High latency?

● …perhaps due to context switching?

● Low throughput?
● Scales poorly as traffic/number of clients

increases?
● Something else?

Preamble on methodology

● Benchmarks are benchmarks
● libdbus
● Statistics taken from various devices—not

directly comparable

Journey of a message

● Alice constructs a message, and gives it to the
bus;

● The bus stamps the message header with
Alice's unique name, and sends it out to its
destination (maybe) and other interested
recipients.

Context switches?

● 1-byte ping-pong using UNIX sockets:
● 10µs on a modern-ish laptop.
● (40µs on a Nokia N900.)

● 1-byte (body) D-Bus message ping-pong:
● 225µs

Message throughput

For comparison

● Best D-Bus throughput: ~37MB/s (32KB
messages)

● Best bare socket throughput: 2GB/s (1MB
messages)

● Bare socket throughput with 32KB messages:
647MB/s

…and furthermore

● Best D-Bus throughput: ~37MB/s (32KB
messages)

● My desktop’s mediocre hard disk writes at
34MB/s and reads at 40MB/s

U+1F63E POUTING CAT FACE

 �

Copies and validations

● Sender marshals message
● Sender writes message to socket
● Daemon reads message from socket
● Daemon validates message
● Daemon writes message to r sockets
● r recipients read the message
● r recipients validate the message
● 4 + 2r copies, 1 + 2r validations

@1990sLinuxUser

“AFAICT dbus is just a replacement for a directory
tree with unix sockets under /tmp. Either is equally

functional.”

What does D-Bus give us?

● Flexible, widely-supported serialization format
● Name service
● Broadcast notifications
● Causal-order delivery among n processes
● Authentication and security policies
● Service activation
● De-facto standard desktop IPC

What does D-Bus give us?

● Flexible, widely-supported serialization format
● Name service
● Broadcast notifications
● Causal-order delivery among n processes
● Authentication and security policies
● Service activation
● De-facto standard desktop IPC

2 20 200 2000
0

20

40

60

80

100

120

140

Session bus
Unloaded bus
Peer-to-peer

Message body size (KB)

T
ra

ns
fe

r
ra

te
 (

M
B

/s
)

5000 method calls

How about epoll?

50000 ping-pongs on… an empty bus
a bus with standard services,
all idle

D-Bus 1.4 using poll 0:54 1:45

Branch using epoll 0:56 0:55

(The fine work of Simon McVittie.)

U+1F639
CAT FACE WITH TEARS OF JOY

�

Revenge of the context switch

● A service emits 10 signals in immediate
succession

● 10 other services have match rules matching
them

First message

● One context switch from sender to D-Bus
daemon;

● Daemon writes the message into 10 sockets;
● A context switch to each recipient, in turn;
● One final switch back to the sender.
● Total: 12

Subsequent messages

● One context switch from sender to D-Bus
daemon;

● Daemon writes the message into one socket;
gets descheduled;

● That recipient reads the message; daemon gets
rescheduled;

● Repeat nine times;
● One final switch back to the sender.
● Total: 22

Raise the daemon's priority?

● Can o' priority inversion worms!
● (But makes this case twice as fast.)

Self-promotion time!

Bustle now uses pcap files

Bustle now uses pcap files

● A big stream of eavesdropped messages…
● …plus ListNames() and a bunch of

GetNameOwners() to make the logs more
usable.

● Possibly inaccurate timestamps.
● Service activation time invisible.
● Good enough for now!

Coming soon to a distro near you!

BOF “On D-Bus”

Wednesday, 17:00, room 1.401/2

Any questions?

http://www.flickr.com/photos/pelhamgrenville/5931208532/

�

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

