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“Slow”

● How slow?
● High latency?

● …perhaps due to context switching?

● Low throughput?
● Scales poorly as traffic/number of clients 

increases?
● Something else?



  

Preamble on methodology

● Benchmarks are benchmarks
● libdbus
● Statistics taken from various devices—not 

directly comparable



  

Journey of a message

● Alice constructs a message, and gives it to the 
bus;

● The bus stamps the message header with 
Alice's unique name, and sends it out to its 
destination (maybe) and other interested 
recipients.



  

Context switches?

● 1-byte ping-pong using UNIX sockets:
● 10µs on a modern-ish laptop.
● (40µs on a Nokia N900.)

● 1-byte (body) D-Bus message ping-pong:
● 225µs



  

Message throughput



  



  



  



  

For comparison

● Best D-Bus throughput: ~37MB/s (32KB 
messages)

● Best bare socket throughput: 2GB/s (1MB 
messages)

● Bare socket throughput with 32KB messages: 
647MB/s



  

…and furthermore

● Best D-Bus throughput: ~37MB/s (32KB 
messages)

● My desktop’s mediocre hard disk writes at 
34MB/s and reads at 40MB/s
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Copies and validations

● Sender marshals message
● Sender writes message to socket
● Daemon reads message from socket
● Daemon validates message
● Daemon writes message to r sockets
● r recipients read the message
● r recipients validate the message
● 4 + 2r copies, 1 + 2r validations



  

@1990sLinuxUser

“AFAICT dbus is just a replacement for a directory 
tree with unix sockets under /tmp. Either is equally 

functional.”



  

What does D-Bus give us?

● Flexible, widely-supported serialization format
● Name service
● Broadcast notifications
● Causal-order delivery among n processes
● Authentication and security policies
● Service activation
● De-facto standard desktop IPC
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How about epoll?

50000 ping-pongs on… an empty bus
a bus with standard services, 
all idle

D-Bus 1.4 using poll 0:54 1:45

Branch using epoll 0:56 0:55

(The fine work of Simon McVittie.)
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Revenge of the context switch

● A service emits 10 signals in immediate 
succession

● 10 other services have match rules matching 
them



  

First message

● One context switch from sender to D-Bus 
daemon;

● Daemon writes the message into 10 sockets;
● A context switch to each recipient, in turn;
● One final switch back to the sender.
● Total: 12



  

Subsequent messages

● One context switch from sender to D-Bus 
daemon;

● Daemon writes the message into one socket; 
gets descheduled;

● That recipient reads the message; daemon gets 
rescheduled;

● Repeat nine times;
● One final switch back to the sender.
● Total: 22



  

Raise the daemon's priority?

● Can o' priority inversion worms!
● (But makes this case twice as fast.)



  

Self-promotion time!



  

Bustle now uses pcap files



  

Bustle now uses pcap files

● A big stream of eavesdropped messages…
● …plus ListNames() and a bunch of 

GetNameOwners() to make the logs more 
usable.

● Possibly inaccurate timestamps.
● Service activation time invisible.
● Good enough for now!



  



  



  



  



  



  



  



  



  

Coming soon to a distro near you!



  

BOF “On D-Bus”

Wednesday, 17:00, room 1.401/2



  

Any questions?

http://www.flickr.com/photos/pelhamgrenville/5931208532/
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