

Software with
the Quality

that Has No Name
Federico Mena Quintero

federico@gnome.org

Desktop Summit, Berlin, Aug/2011

mailto:federico@gnome.org

Our house
in the middle of our street

FIXME: before/after pictures

1994 1999

 Christopher Alexander

1977

Intimacy gradient

House Office

Light on two sides
of every room

Wrinkle the building's edge

Storage
Garage

Indoor sunlight

Bedrooms

Kitchen

Breakfast
nook

Garden

Porch

Workshop

Family
rooms

Morning sun
Evening sun

South-facing rooms

Pattern name

● Super-patterns
● Statement of problem
● Discussion
● Summary of the solution
● Sub-patterns

● Super-patterns: wings of light, positive outdoor
space, cascade of roofs

● Statement of problem: People gravitate to well-lit
rooms.

● Discussion:

● Summary of the solution: Light on two sides; natural
light through the windows

● Sub-patterns: Roof layout, windows overlooking life,
window place, filtered light

Light on two sides
of every room

Light on two sides
of every room

Intimacy gradient

Alcoves
Window place

Filtered light

Positive outdoor space
Cascade of roofs

A room of one's own

Common areas
at the heart

Half-private officeReception
welcomes you

Indoor sunlight

Sleeping to the East

Patterns
do not

give you
a final form

Patterns
give you

a
vocabulary

Architecture Programming
Alcove Factory
Positive space Strategy
Cascade of roofs Listener

Pattern: Zooming

1.050 1.051 1.052 1.053 1.054

The ticket booth

Ticket booth

Purchase
method Queue

of people

Shape of
booth

The Quality Without A Name

partition (array, left, right, pivot)
{
 pivot_value = array[pivot];
 swap (array, pivot, right);
 store = left;
 for (i = left; i < right; i++) {
 if (array[i] < pivot_value) {
 swap (array, i, store);
 store++;
 }
 }
 swap (array, store, right);
 return store;
}

quicksort (array, left, right)
{
 if (left < right) {
 pivot = (left + right) / 2;
 new_pivot = partition (array, left, right, pivot);
 quicksort (array, left, new_pivot - 1);
 quicksort (array, new_pivot + 1, right);
 }
}

The Quality for Software

● (According to Richard Gabriel)

● It was not written to unrealistic deadline

● Any bad parts were repaired during the maintenance or are being repaired now

● If it is small, it was written by an extraordinary person, someone I would like as a
friend; if it is large, it was not designed by one person, but over time in a slow,
careful, incremental way

● If I look at any small part of it, I can see what is going on

● If I look at any large part in overview, I can see what is going on

● It is like a fractal, in which every level of details is as locally coherent and as well
thought as any other level

● Every part of the code is transparently clear - there are no sections that are
obscure in order to gain efficiency

● Everything about it seems to be familiar

● I can imagine changing it, adding some functionality

● I am not afraid of it, I will remember it

2001-2004

15 Properties of Living Structure

The void

The void

Good shape

The void

Good shape

Echoes

The void

Good shape

Echoes

Positive space

The void

Good shape

Echoes

Positive space

Local symmetries

The void

Good shape

Echoes

Positive space

Local symmetries

Strong centers

The void

Good shape

Echoes

Positive space

Local symmetries

Strong centers

Roughness

The void

Good shape

Echoes

Positive space

Local symmetries

Strong centers

Roughness

Alternating repetition

Negative space – amorphous leftovers
Weak centers

GIMP
toolbar

Empty image

Layers dialog

Negative space – amorphous leftovers
Weak centers

Positive space
(convex, enclosed)

Boundary

Strong centers

Inkscape menu/toolbar

Tool areaDrawing area

Design
as

computation

Stepwise: one step at a time

Stepwise: one step at a time

Reversible: test using models,
prototypes, trial and error

Stepwise: one step at a time

Reversible: test using models,
prototypes, trial and error

Structure-preserving: each step
builds on what is already there

Stepwise: one step at a time

Reversible: test using models,
prototypes, trial and error

Structure-preserving: each step
builds on what is already there

Design from weakness: each step
improves coherence

Stepwise: one step at a time

Reversible: test using models,
prototypes, trial and error

Structure-preserving: each step
builds on what is already there

Design from weakness: each step
improves coherence

New from existing: emergent
structure combines what is already
there

Structure-
preserving

transformations

PhoneCall

A class

weak, latent center

HalfCall HalfCall

Pattern: Half-object + Protocol

Local symmetry, strong center,
levels of scale

HalfCall HalfCall

What joins to what?

Local symmetry, levels of scale, boundaries,
deep interlock and ambiguity

HalfCall HalfCallCall

Explicit boundary

Local symmetry, deep interlock,
and this is composable

 H
a
lf
C

a
ll

HalfCall HalfC
all

Call

Composable elements

Multi-way calls, conference calls

Form languages

Form language
(Japan/China)

Form language (Germany)

Pattern language

Pattern language

Form language

Pattern language

Form language

Pattern language

Adaptive
design method

Form language

Behavior-
preserving

transformations

Move common code to function
Strong center
Boundary

Move common code to function
Strong center
Boundary

Add parameter to a function
Roughness
Non-separateness

Move common code to function
Strong center
Boundary

Add parameter to a function
Roughness
Non-separateness

Replace parameter with
explicit methods

Strong centers
Simplicity
Non-separateness
Deep ambiguity and interlock

Delete a bunch of code
The void
Simplicity and inner calm

Credits

● Rob Hopkins – Picture of Christopher Alexander
● Amazon.com – Book covers
● Oxford University Press – diagrams from “A

Pattern Language”
● Hobbit house -

http://www.tenchford.com/hobbit%20house.html
● Other pictures – Flickr Creative Commons
● Japan – Lennart Poettering
● Process diagrams – Nikos Salingaros

http://www.tenchford.com/hobbit%20house.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

