
GStreamer
The road to 1.0

Wim Taymans (wim@collabora.com)
Edward Hervey (edward@collabora.com)

8 aug 2011 – Desktop Summit 2011

mailto:wim@collabora.com
mailto:edward@collabora.com

● Reworked memory model
● Buffer Metadata
● Dynamic pipeline changes

– Probes
– Negotiation
– Timing changes

● First class GstMemory object
– Refcounted block of memory
– Resize/copy
– Map/unmap

● GstAllocator makes those blocks
– Can add new allocators
– Identified with a string name

● GstBuffer has list of GstMemory objects
● Buffer operations operate on underlying

memory objects
– Copy/resize
– Map/unmap

So what ?

● Some DSPs need to store video planes in
different memory blocks

GstBuffer

Y U V

● Scatter gather buffer data

GstBuffer

RTP
header NALU NALU

...

Why explicit map/unmap GstMemory ?

● GstMemory map/unmap to get access to
the data

– Keep track of who reads/writes
– Cache flushes (between DSP/GPU)
– Might actually do mmap/munmap or

equivalent

● New memory model should improve
– Integration with DSP/GPU
– Integration with vaapi/vdpau
– ...

● GstMeta
– Attach arbitrary structures to buffers
– Extra properties
– Extra methods
– Well defined API, multiple

implementations possible

But.. we want examples !

XImage information associated with
GstBuffer

GstBuffer

X shared
 memory

 GstMetaXImage
{
 ...
 Ximage *
 XshmSegmentInfo
 ...
}

GstMetaVideo describing video buffers

GstBuffer

image
 data

 GstMetaVideo
{
 ...
 guint n_planes;
 gsize offset[MAX_PLANES];
 gint stride[MAX_PLANES];

 gpointer (*map) (…);
 gpointer (*unmap) (…);
 ...
}

● GstMetaVideo also has API

gpointer gst_meta_video_map (GstMetaVideo *meta,

 guint plane,

 gint *stride,

 GstMapFlags flags);

gboolean gst_meta_video_unmap (GstMetaVideo *meta,

 guint plane,

 gpointer data);

● GstMetaCrop as an example of an
operation

– Instead of changing data, attach info
about what to change and do the
change later (maybe combined
with other operations)

● But how can we know what metadata is
supported in the pipeline

– Does downstream understand
cropping metadata or do we have
to do the cropping ourselves ?

● Consider decoder ! videosink

videodec videosink...

Does the videosink
Understand cropping

Metadata ??

● ALLOCATION query

videodec videosink...

 videodec does the
 downstream
 ALLOCATION
 query to find out

● The ALLOCATION query :
– How to allocate memory blocks (the

supported allocators)
– Alignment/prefix
– Min/max amount of buffers
– Supported metadata
– But also : an optional GstBufferPool

object

GstBufferPool ?

● Preallocate buffers
– min/max amount of buffers
– Prefix alignment
– Reuse buffers
– That's how some hardware wants it
– That's how some API's want/prefer it

(v4l2, OpenMax, ..)
● ...

● Most awesome feature of GstBufferPool is
to do extensive configuration of the
allocated buffers

– Enabled/queried with extensible
bufferpool options

… An example ?

● Ask bufferpool to attach metadata to
buffers

– Because you can deal with it
(GstMetaVideo, for example)

● Ffmpeg without EMU_EDGE flag
– Sink bufferpool supports extra config

option for padding and
stride_alignment

– Ffmpegdec configures and sink
allocates bigger area

● Renegotiation now with a RECONFIGURE
event

– No more piggyback on buffer_alloc

Allows us to remove all the complicated
code from basetransform

Improved support for dynamic pipelines

● Sticky events
– Define context of stream

(caps, tags, timing
info...)

– Stored on pads
– Passed to newly linked

pads automatically

● Tweaked GstSegment to
include the accumulated time
(base)

– No more segment
accumulation

– Segment accumulation
was only useful for
looping

● Add API to change offset on
pads

– Can adjust running-time
on a per pad basis

● Improved pad probes
– Merged probes and pad

block
– Can get notify about

datapassing
– Notify when no data is

flowing on the pad
(pad_block on steroids)

● New video GstCaps :
– video/x-raw-rgb, bpp=16, depth=15,

endianness=1234,red_mask=31744,
green_mask=992,blue_mask=31

– => video/x-raw, format=RGB15

Current state

● Core/Base/gst-ffmpeg working, some
plugins from Good and Ugly too.

● First 0.11.0 release is out !
● Port plugins and applications !!
● API not 100% stable yet but getting close

– There is a porting document

What's not quite working

● Bufferpool renegotiation is not yet well
understood/implemented

● Dynamic pipeline features not so much
tested

– Probes API still misses interesting
bits.

● We need to port more plugins to make it
useful

● We need to make more plugins use the
new features

● Some more Goals
– Remove GstPropertyProbe
– More base classes
– Split parsers from decoders

What's next

● We'll be porting more apps and plugins
● We'll be doing more 0.11.x releases

On track for a 1.0 release later this year

Questions ?

