Oracle Trusted Extensions & GNOME 3 Migration

August 6, 2011

Brian Cameron
Desktop Software Engineer
Solaris Desktop Group
Oracle Solaris Trusted Extensions
What is Solaris Trusted Extensions?

<table>
<thead>
<tr>
<th>Integrated into Solaris</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Labeled Security for Solaris</td>
<td>• Isolate data based on its sensitivity</td>
</tr>
<tr>
<td>• Mandatory Access Control based on labels</td>
<td>• Regulate network data flow easily</td>
</tr>
<tr>
<td></td>
<td>• Comply with data privacy legislation</td>
</tr>
</tbody>
</table>
Trusted Solaris History

• 1990, SunOS MLS 1.0
 • Conformed to TCSEC (1985 Orange Book)
• 1992, SunOS CMW 1.0
 • Compartmented-mode workstation requirements
 • Release 1.2 ITSEC certified for FB1 E3, 1995
• 1996, Trusted Solaris 2.5
 • ITSEC certified for FB1 E3, 1998
• 1999, Trusted Solaris 7
• 2000, Trusted Solaris 8
 • Common Criteria: CAPP, RBACPP, LSPP at EAL4+
 • Updates to Trusted Solaris 8 also re-certified
• 2006, Solaris 10 11/06 with Trusted Extensions
 • Common Criteria: CAPP, RBACPP, LSPP at EAL4+, 2008
 • Assurance Continuity for Solaris 10 5/08 and 5/09
 • http://www.sun.com/software/security/securitycert/
• 2011, Solaris 11 with Trusted Extensions
What is Labeling?

• Every object has a label associated with it.
 • Files, windows, printers, devices, network packets, network interfaces, processes, etc...

• Labels have hierarchical or disjoint relationships.

• Accessing or sharing data is controlled by the objects' label relationship to each other.
 • Reading requires label dominance.
 - Reader's label ≥ objects label
 • Writing requires label equality for the subject and object.
What Gets Labeled?

Explicitly Labeled
- Users and Roles
- Zones
- Hosts and Networks
- ZFS datasets
- X11 Windows
- GNOME Workspaces

Implicitly Labeled
- Processes
- Files and directories
- Devices
- Sockets
- System V IPCs
- Pixels

• Only zones must be explicitly labeled.
• All other resources have default values.
Solaris Trusted Extensions

- All objects are labeled, based on sensitivity.
- Access governed by label hierarchical relationship.

Commercial Hierarchy
- Executive Management
- VP and Above
- Directors
- All Employees

Government Hierarchy
- Top Secret
- Secret
- Confidential
- Classified

Non-Hierarchical
- Net Inc.
- Music Online
- Daisy's Florists

Solaris 10 or Trusted Extensions

Mandatory Access Control & Security Labels
Labeled Zones in Trusted Extensions

• Each zone provides a security boundary.
 • Unique sensitivity label per zone.
 • Labels are implied by process zone ID's.
 • Processes and data are isolated by label.

• No object is writable by more than one zone.
 • Mount policy prevents writing down or reading up.
 • Network policy requires endpoint label equality (default).

• Information sharing between zones is based on label relationships.
Multilevel Architecture

- Layered architecture implements:
 - Mandatory access control
 - Hierarchical labels
 - Principle of least privilege
 - Trusted path
 - Role-based access

SPARC, x86 or x64 Hardware
Local or Sun Ray display
Solaris Kernel Services

- Multilevel Networking
- Filesystem mount policy
- Containment (zones)
 - Processes
 - Devices
 - Resource Pools

Global Zone

Need-to-know Internal Use Public

Solaris Kernel

SPARC, x86 or x64 Hardware
Local or Sun Ray display
Multilevel Services

- Label Policy Administration
- Labeled Printing
- File Sharing
- Auditing
- Device Allocation
- Labeled Windows
- Single Sign-on

SPARC, x86 or x64 Hardware
Local or Sun Ray display
Single Level Applications

- Databases
- Web Servers
- Windows Remote Desktop
- Firefox
- OpenOffice
- Nautilus

SPARC, x86 or x64 Hardware
Local or Sun Ray display
Robustness of Global Zone Policies

• Access restricted to authorized roles.
 • Roles must be assumed by authorized users.
 • Roles must be cleared to highest label.
 • Role assumption must be done via Trusted Path.
 - Mutual trust established via CIPSO protocol.
 - IPSec can be used to enhance trust and privacy.
 - No remote access by default.

• Access to labeled zones requires use of privilege.
 • Labeled zone mount points not traversable.
 • Labeled zone processes not accessible.
Robustness of Labeled Zone Policies

• Label and privilege limits configured in global zone.
• No privilege escalation beyond zone's limit set.
• No MAC policy overrides in labeled zones.
• No escape from labeled zones.
• No user access to global zone.
Labeled Networking

- Intranet
- Need-to-know
- Internal Use
- Public
- Global zone
- Kernel
- Multilevel Network
- SunRay Network

Multilevel Network
Single and Multilevel Ports

- Kernel maintains cache of labels and endpoints.
 - Implicit labels based on IP address or Network.
 - Explicit labels based on CIPSO label in packet.
- Packets are routed to hosts and zones by label matching rules.
 - Generally label equality required between endpoints.
 - Multilevel ports accept labels within range or set.
 - For NFS operations, read-down is supported.
 - Sockets are marked with special socket attribute.
 - Unique binding of port, label, and IP address.
Filesystem MAC policies

• Labels derived from a filesystem owner's label.
• Mount policy is always enforced.
 • No reading-up
 - Read-write mounts require label equality in labeled zones.
 • Reading-down
 - Read-only mounts require dominance by client.
 - Can be restricted via zone's limit set and network label range.
 • Writing-up
 - Cannot write-up to regular files.
 - Limited write-up to label-aware services (via TCP and doors).
 • Writing-down
 - Restricted to privileged label-aware global zone services.
Trusted Extensions Configurations
Oracle Cross-Domain Security Express

- Oracle's cross-domain solutions requires Solaris Trusted Extensions.
- DCID 6/3 PL4 Certified and Accredited.
- Labeled zones provide strong separation between clients on separate networks.
- Multilevel databases using Oracle Label Security benefit from the Common Criteria Certification of Trusted Extensions at EA4+ for LSPP and RBAC.
Labeled Routing

Value Proposition:

Each Site Distributes Packets thru a Trusted Router (assembling & deassembling on each side). Result is a decrease of 6:2 in encryption devices for this example (3 to 1 @ each site). This provides a simple way to propagate enclave networks to remote locations like an Army command post.
Multilevel Thin Client Solution

DTW 4.1 is included in latest UCDMO Baseline
Labeled Virtual Machines

VirtualBox

Top Secret
(Labeled Local Zone)

Secret
(Labeled Local Zone)

Unclassified
(Labeled Local Zone)

Global Zone

Solaris 10 Trusted Extensions
Trusted Solaris GNOME Features

• GNOME 2 has been customized via patches to support a number of unique features:
 • Some parts of GNOME run in the global zone: gnome-session, sysadmin programs, screen lock, gnome-panel, and panel applets.
 - Programs that run in the global zone are controlled by placing desktop files in a special Trusted directory, or are hardcoded to run in the zone (e.g. gnome-session and gnome-panel).
 - Some of these programs do not need to run in the global zone. Further enhancements would be needed to support the panel and applets running in different zones, for example.
 • Most applications run in the labeled zone associated with the workspace.
 • (Continued on next slide)
Trusted Solaris GNOME Features (con't)

- Solaris role and zone awareness: workspaces and windows are associated with a unique role and zone; identified by unique colors and labels.
- RBAC awareness. Only programs that the user can run are shown in the menus, such as in the panel menu.
- Trusted Path features - An X11 Trusted extension is used to tighten X security.
 - Works with the Trusted Stripe to indicate when the user is in the Trusted Path when the lock screen is showing.
 - Better enforces how grabs are managed. Better grab support helps to avoid grab issues with the lock screen program, for example.
 - Copy/Paste access control. No copy/paste across boundaries.
- The Trusted Stripe, see next slide.
Trusted Java Desktop System Details

Only labeled GNOME-based interface shipped with an OS

Workplace Switcher

Task Switcher

Trusted Stripe and Trusted Path Menu
Access Control Enforced Everywhere

Stripe showing 'Restricted'

Stripe showing 'Internal'

Attempts to 'drag-and-drop' data between windows fails because user is not authorized to do so.

Enforced when transferring data anywhere to anything on the system.
GNOME 3 Porting Issues

• GNOME Shell vs. GNOME 3 Fallback
 • Solaris Trusted Extensions is typically deployed on Sun Rays, which do not support OpenGL. Therefore, it makes sense to initially port Solaris Trusted Extensions to work with GNOME 3 Fallback mode.
 • There could be value in making Solaris Trusted Extensions work with GNOME Shell.
 • GNOME Shell and GNOME 3 Fallback mode use different workspace switching and window management mechanisms, which means porting Solaris Trusted Extensions to GNOME Shell would require significant rework.
 • Our work so far shows that porting Solaris Trusted Extensions code and patches to GTK3 will require a significant amount of work.
 • The GNOME panel and applets in GNOME 3 Fallback mode have been reworked, so the porting effort will be non-trivial.
GNOME 3 Porting Status

- Over the past month, GNOME Shell and GNOME 3 Fallback mode have been ported to work on Solaris.
- It works well on both standalone desktops and GNOME 3 Fallback mode works well on Sun Rays.
- 10 of the 20 patches required to make GNOME 3 Fallback mode work with Solaris Trusted Extensions have already been ported.
- Likewise, some patches to make GNOME 3 Fallback mode work well with Sun Ray have not yet been ported. For example, configuration tweaks that need to be ported from using GConf to GSettings.
Opportunities to Collaborate

• All Solaris Trusted Extensions code is free software released under GPL licensing.
• Many features of Solaris Trusted Extensions are generally useful.
 • Labeled workspaces and windows.
 • Hooks for running GNOME in environments where the desktop and applications run in different environments, such as zones.
 • More sophisticated window switching features, such as more rich libwnck signals.
• If there is interest within the GNOME community, we could collaborate to provide support for such features upstream.
 • Efforts were made by Sun in the early GNOME 2 release cycle to collaborate in this area, but there was not much interest.