

Building GNOME

What is this talk about?

● Meta-build systems (jhbuild, rpm/dpkg, Yocto)
● Improving new GNOME developer experience
● Improving long-time GNOME developer

experience
● Changing whatwhat we're building and howhow (with an

eye to improving the GNOME useruser experience)
● If we have time, GNOME OS thoughts

What is this talk NOT about?

● Module-internal build systems (autotools vs
cmake vs ...)
● (my opinion: autotools is mostly good)

● Dpkg vs rpm vs...
● (my opinion: they are all pretty much just the same

uninteresting wrappers for tar/wget; an intern could
write a basic one in a week)

● How to build third party applications for
GNOME/Linux
● This is an entirely separate and complex topic

Why are we here in this talk?

(context: lots of refactoring of the Linux build)

“So there's a very significant 2.1% reduction of
work for the compiler to do, very nice!” -- Ingo

Molnar, linux-kernel mailing list, 2011-05-28

Ingo is a very talented developer, paid (probably
well) to do what he does. Why does he care

about build times?

Competent build benefits

● Edit, Compile, Debug
● Continuous integration
● Fast, reliable builds means more testingtesting

Edit, Compile, Debug

● The length of this cycle directly directly impacts
developer productivity

● It is worth taking shortcuts to speed things up
● Developer time spent on meta-tasks like builds

can pay off over time
● There is a big difference between < 10 seconds

 and >= 10 seconds. At > 10 seconds, people
will lose attention and switch to reading their
email

Continuous Integration, part 1

● A basic prerequisite of competent development
● Knowing who who broke the tests and whenwhen allows us to

revertrevert changes for a constantly usable tree

● Constantly producing means there is no “magic
dance” for a release
● Changing anythinganything at the last minute implies the

possibility of breaking changes, even if the change
is just incrementing a version in configure.ac

● I will either bring this to GNOME, or die trying

Continuous Integration, part 2

● http://tinderbox.mozilla.org/showbuilds.cgi?tree=Mozilla-Inbound
● Performance tracking over time

● All of this can combine to deliver higher quality
software to users, and help new developers

● I will either bring this to GNOME, or die trying

http://tinderbox.mozilla.org/showbuilds.cgi?tree=Mozilla-Inbound

Integration Testing

● Difference between unit and integration testing
● Unit tests have low external dependencies and

usually test internal API

● Most of our current “make check” are really
integration
● Almost all the glib tests should be split out so we

can run them withoutwithout building glib

jhbuild

● In GNOME, jhbuild is our meta-build tool
● Designed for contribution

● Git checkouts

● Designed for speed (sorta)
● A lot of shortcut commands offered like jhbuild jhbuild

buildonebuildone, won't complain

● Designed to do partialpartial builds
● Work from a presumably stable base

● Does not (currently) help distribute binaries

What about “distros”?

● (Debian/Fedora style, not Gentoo)
● Self-hosting
● Reproducible/Reliable

● Be able to get a security update out

● Compliance with licenses (GPL)
● Encourage FOSS
● Also, about as slow as you can get without

involving virtualization
● I/O is expensive expensive

Yocto

● Designed for crosscross builds
● Designed for people making Linux-based

products – deep control over OS image
● Optimized for building an entire OS image from

source on oneone machine
● Fast (parallel, built in ccache usage, etc.)
● Handles GPL compliance
● Has ~full time Intel people on it
● Is the future replacement for jhbuild

Continuous Integration, part 2

● http://tinderbox.mozilla.org/showbuilds.cgi?tree=Mozilla-Inbound
● Performance tracking over time

● All of this can combine to deliver higher quality
software to users, and help new developers

● I will either bring this to GNOME, or die trying

http://tinderbox.mozilla.org/showbuilds.cgi?tree=Mozilla-Inbound

Integration Testing

● Difference between unit and integration testing
● Unit tests have low external dependencies and

usually test internal API

● Most of our current “make check” are really
integration
● Almost all the glib tests should be split out so we

can run them withoutwithout building glib

Improving jhbuild: Build failure

● It's ok for builds to fail, if it's somewhat obvious
● Example: module A uses API just added in module

B

● “Undebuggable” build failures can cost hours or
even days
● Stale files left over in build tree
● API that changes semantics

● Jhbuild will delete no-longer-installed files
● Jhbuild will do “git clean -dfx” before building

Improving jhbuild: Misc

● We will use parallel make by default
● srcdir != builddir; improve reliability and also

support both gcc -O2 and gcc -O0 builds
● Add logging

● Track compiler warnings
● pastebin

● Better terminal interaction

Improving jhbuild: New Developers

● Fresh VM
● jhbuild sysdeps

● Reuse system packages

● jhbuild sysdeps –install
● Find what we need, install it on system

Continuously produced binaries
implies...

● ...shipping them.
● Many users want to be able to see/try the latest

without compiling things
● Binaries could be used as a quickstart for new

GNOME developers

GNOME OS thoughts, part 1

● GNOME is the right place for development
● GNOME currently holds 1/2 of the application API (glib,

gtk+, themes)
● GNOME should get more credit for things

● Plugging in USB devices

● Should not 100% compete with distributions
● Need to add value where they lack focus
● Refer people who want distributions to them

● Should sync up with distributions explicitly
● How do desktop features impact server etc.

GNOME OS thoughts, part 2

Controversial/hard issues:
● Security updates
● Support for proprietary software

● What is stable application API

● $#@!$ packages

State of the art is patching Firefox to say “I'm broken
now”

● Non-application stuff
● Codecs, proprietary drivers, antivirus

GNOME OS thoughts, part 3

● Corporate influence
● Full time developers and system administrators

massivelymassively influence project direction
● Ideally GNOME is not dependent on one financial

stream
– Apache requires projects to have at least two

independent income sources

● Branding is obviously tough...
● But we want e.g. RHEL to credit GNOME in addition

to Fedora

GNOME OS thoughts, part 4

● Mozilla is a successful project with a useful
impact on society and the technology industry,
that happens to also be FOSS
● They have a revenue model which scales per user;

GNOME does not

● Still though, anything we can do to be more like
Mozilla, we should.

Phases

● 3.2: less lame jhbuild
● 3.2-3.4: /opt/gnome binaries
● 3.2-3.4: Integration testing over /opt/gnome on

build.gnome.org
● 3.4: Build sheriff
● 3.4-3.6: Yocto+jhbuild generated base image

and SDK for use in VM
● 3.6: Installer and updater (OS and apps)

Questions?

