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Qt Script



QtScript

C++ API to make your applications scriptable



QScriptEngine

+ Environment to evaluate a script

- Context

+ Global Object

- Use QMetaObject system to automatically export QObjects



QObjects

Can be exported out of the box:
+ Properties
- Signals
- Slots
- Q_INVOKABLE



QScriptValue

Container for QtScript data types:
» Support for ECMA-262 types
+ Support for QObject, QVariant and QMetaObject
- Prototype property that is common to all instances of an object



JS Bindings



JS Bindings for Qt

Bindings are proxy objects/functions to interface with the ‘real’ libraries



JS Bindings for Qt

Steps to create your bindings:
+ Create wrap code (check context arguments)
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JS Bindings for Qt

Steps to create your bindings:
+ Create wrap code (check context arguments)
- Register your wrappers with the engine
- Be happy )






QML

Declarative language to ease the development of Uls



QDeclarativeEngine

- Handles QML code
+ Does not inherit QScriptEngine



QDeclarativeEngine

- Handles QML code
+ Does not inherit QScriptEngine
- It has a QScriptEngine inside



QDeclarativeEngine
Public API

+ QML specific methods

+ It has its own ‘context’: QDeclarativeContext
+ QObject works out of the box

- It's possible to register C++ declarative items



QDeclarativeExpression

Evaluate a JS expression in a QML context






First of all...
... why use QML?

Declarative languages are way better (and faster) to build rich Uls!
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First of all...
... why use QML?

Declarative languages are way better (and faster) to build rich Uls!
+ Microblog plasmoid (C++): 1250 LOC
- Declarative Microblog: 500 LOC



KDE Use case

- Uses QtScript since a long time ago



KDE Use case

- Uses QtScript since a long time ago
+ It has a lot of JS bindings for non-QObject classes
- i18n
- QGraphicsLayout
+ QFont
+ Ul loader



The problem

QDeclarativeEngine does not export its QScriptEngine!
Because of this, there is no way to register our bindings.



Possible solution

Export all non-QObject classes using QObject wrappers



KDE Solution

The rise of libkdeclarative
Spoiler alert: This is the way you're going to use QML in your KDE app!



QScriptValue

Let’s take a look at QScriptValue API

+ QScriptEngine* engine() const
« All slots’ arguments are QScriptValues on the script side



Access to the internal QScriptEngine!

Example

root—>setContextProperty("__eng",

engineAccess );
QDeclarativeExpression

expr("__eng .setEngine (this)" );

expr.evaluate ();



Access to the internal QScriptEngine!

void EngineAccess ::setEngine (QScriptValue val) {
m_kDeclarative —>d—>scriptEngine = val.engine ();

}



Still one last problem

The Global Object used by QML is read-only



Let’s change the global object

Example

QScriptValue originalO = engine—>globalObject ();

QScriptValue newO = engine —>newObject ();

QScriptValuelterator iter(originalO);
while (iter.hasNext ()) {

newO.setProperty (iter.scriptName (), iter.value ())

}

scriptEngine —>setGlobalObject (new0O);



Using QML right now

Use libkdeclarative in your application in order to have QML integration
with KDE environment.



Integration with KDE

+ Qlcon

+ QPixmap
+ QFont

- Klob

- KConfig
- .ui loader

+ Plasma’s DataEngines and Services



What about widgets?

KDE Components

+ GSoC 2011 Project: Daker Fernandes
+ Step one: port all Plasma Widgets to QML
- Step two: start porting kdelibs/ui



What about widgets?

KDE Components

+ GSoC 2011 Project: Daker Fernandes
+ Step one: port all Plasma Widgets to QML
- Step two: start porting kdelibs/ui

This GSoC project is only about step one!



KDE Components
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PROBLEM SOLVED




Issues

QML internal objects may not behave as documented



Issues

Done this way because of performance issues
Example: QScriptString has persistent handle to the string, and that is
expensive






Qt 5 and QtQuick 2.0

+ QML will switch from JavaScriptCore to V8
+ The 'KDE solution’ will stop working: everything needs to be QObject



QScriptValue can be used as a module API

Only in JavaScript code, as it’s imperative

import My.Qml.Module as Module

Item {
Component.onCompleted: {

var obj = new Module.MyType;
Module .doSomething (obj);



Thanks!

Questions?
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