Extend your KDE application
Using QML!

Artur Duque de Souza
Aug/2011

g’openBossa

Software in a creative way



Agenda

- (Big) Introduction
+ A problem

- KDE Solution

« Issues

+ Future



Qt Script



QtScript

C++ API to make your applications scriptable



QScriptEngine

+ Environment to evaluate a script

- Context

+ Global Object

- Use QMetaObject system to automatically export QObjects



QObjects

Can be exported out of the box:
+ Properties
- Signals
- Slots
- Q_INVOKABLE



QScriptValue

Container for QtScript data types:
» Support for ECMA-262 types
+ Support for QObject, QVariant and QMetaObject
- Prototype property that is common to all instances of an object



JS Bindings



JS Bindings for Qt

Bindings are proxy objects/functions to interface with the ‘real’ libraries



JS Bindings for Qt

Steps to create your bindings:
+ Create wrap code (check context arguments)



JS Bindings for Qt

Steps to create your bindings:
+ Create wrap code (check context arguments)
- Register your wrappers with the engine



JS Bindings for Qt

Steps to create your bindings:
+ Create wrap code (check context arguments)
- Register your wrappers with the engine
- Be happy )






QML

Declarative language to ease the development of Uls



QDeclarativeEngine

- Handles QML code
+ Does not inherit QScriptEngine



QDeclarativeEngine

- Handles QML code
+ Does not inherit QScriptEngine
- It has a QScriptEngine inside



QDeclarativeEngine
Public API

+ QML specific methods

+ It has its own ‘context’: QDeclarativeContext
+ QObject works out of the box

- It's possible to register C++ declarative items



QDeclarativeExpression

Evaluate a JS expression in a QML context






First of all...
... why use QML?

Declarative languages are way better (and faster) to build rich Uls!



First of all...
... why use QML?

Declarative languages are way better (and faster) to build rich Uls!
+ Microblog plasmoid (C++): 1250 LOC



First of all...
... why use QML?

Declarative languages are way better (and faster) to build rich Uls!
+ Microblog plasmoid (C++): 1250 LOC
- Declarative Microblog: 500 LOC



KDE Use case

- Uses QtScript since a long time ago



KDE Use case

- Uses QtScript since a long time ago
+ It has a lot of JS bindings for non-QObject classes
- i18n
- QGraphicsLayout
+ QFont
+ Ul loader



The problem

QDeclarativeEngine does not export its QScriptEngine!
Because of this, there is no way to register our bindings.



Possible solution

Export all non-QObject classes using QObject wrappers



KDE Solution

The rise of libkdeclarative
Spoiler alert: This is the way you're going to use QML in your KDE app!



QScriptValue

Let’s take a look at QScriptValue API

+ QScriptEngine* engine() const
« All slots’ arguments are QScriptValues on the script side



Access to the internal QScriptEngine!

Example

root—>setContextProperty("__eng",

engineAccess );
QDeclarativeExpression

expr("__eng .setEngine (this)" );

expr.evaluate ();



Access to the internal QScriptEngine!

void EngineAccess ::setEngine (QScriptValue val) {
m_kDeclarative —>d—>scriptEngine = val.engine ();

}



Still one last problem

The Global Object used by QML is read-only



Let’s change the global object

Example

QScriptValue originalO = engine—>globalObject ();

QScriptValue newO = engine —>newObject ();

QScriptValuelterator iter(originalO);
while (iter.hasNext ()) {

newO.setProperty (iter.scriptName (), iter.value ())

}

scriptEngine —>setGlobalObject (new0O);



Using QML right now

Use libkdeclarative in your application in order to have QML integration
with KDE environment.



Integration with KDE

+ Qlcon

+ QPixmap
+ QFont

- Klob

- KConfig
- .ui loader

+ Plasma’s DataEngines and Services



What about widgets?

KDE Components

+ GSoC 2011 Project: Daker Fernandes
+ Step one: port all Plasma Widgets to QML
- Step two: start porting kdelibs/ui



What about widgets?

KDE Components

+ GSoC 2011 Project: Daker Fernandes
+ Step one: port all Plasma Widgets to QML
- Step two: start porting kdelibs/ui

This GSoC project is only about step one!



KDE Components

Buttons Check Box Busylndicator  Slider Scroll Bar

Buton | [l Check Box1 : Color Selector
Red
Checkable Button ‘ [l Check Box 2
Different Font | M
M rconButton ‘ [l 2 loooooooo000000ng text

] | Radio Button
Scroll Decorator

[lRadioButton

[ |
Button Row

N He Hc

inverted

Button Column
B Alice

HWeob
W charles




PROBLEM SOLVED




Issues

QML internal objects may not behave as documented



Issues

Done this way because of performance issues
Example: QScriptString has persistent handle to the string, and that is
expensive






Qt 5 and QtQuick 2.0

+ QML will switch from JavaScriptCore to V8
+ The 'KDE solution’ will stop working: everything needs to be QObject



QScriptValue can be used as a module API

Only in JavaScript code, as it’s imperative

import My.Qml.Module as Module

Item {
Component.onCompleted: {

var obj = new Module.MyType;
Module .doSomething (obj);



Thanks!

Questions?

openBossa

Software in a creative way

Artur Duque de Souza
http://blog.morpheuz.cc
asouza@kde.org



	QtScript
	JS Bindings
	QML
	KDE
	Issues
	Future
	Thanks

