

Dan Williams

Network and Location Awareness in Your
Application

There are three core parts of
Network Awareness...

HOW WHATAM I?

Am I connected at all?

The How: what is the “cost”of a
packet?

$ € ¥

Consider security...

And latency...

The What: what am I connected to?

EVIL?

The What: what am I connected to?

Good...

Zones can help determine what apps
should do using general categories.

Home Work Public

The connection tells you how to access
the resources your app will use.

Location awareness is knowing where
you are on a map.

Your mom is here...

Each method of location positioning
has different constraints and varied
accuracy.

Slow but accurate Fast but inaccurate

Eh, why bother?

You care about network and location
awareness because you care about
your users.

It's trivial for many applications to do
the smart thing.

Location is the hot new thing in social
apps.

WHOA!

WHOA...!

Also keep the downside of location
awareness in mind.

That's all interesting,
but what can I do

about it?

NetworkManager give your app the
network awareness it so desperately
wants.

Decision Status Configuration

ModemManager prevents you from
cutting your eyes out with a dull
spoon.

Most of the time you won't use
ModemManager directly, but through
a higher level framework.

Show me the code
fool!

Getting network state with
NetworkManager is pretty trivial.
import dbus, sys

bus = dbus.SystemBus()

m_proxy = bus.get_object("org.freedesktop.NetworkManager",

 "/org/freedesktop/NetworkManager")

manager = dbus.Interface(m_proxy, "org.freedesktop.NetworkManager")

names = { 0: "unknown", 10: "sleeping", 20: "disconnected",

 30: "disconnecting", 40: "connecting", 50: "connected locally",

 60: "connected sitewide", 70: "connected globally" }

state = manager.state()

try:

 print "State: %s" % names[state]

except KeyError:

 print "State: unknown"

Also trivial using KDE's Solid
framework, if that's your thing...
If (Solid::Networking::status() == Solid::Networking::Connected)

{

 kDebug() << "Networking is enabled. Feel free to go online!";

}

else

{

 kDebug() << "Network not available.";

}

Getting the list of active network
connections is pretty easy too.
import dbus, sys

bus = dbus.SystemBus()

Get a proxy for the base NetworkManager object

m_proxy = bus.get_object("org.freedesktop.NetworkManager",

 "/org/freedesktop/NetworkManager")

manager = dbus.Interface(m_proxy, "org.freedesktop.NetworkManager")

mgr_props = dbus.Interface(m_proxy, "org.freedesktop.DBus.Properties")

active = mgr_props.Get("org.freedesktop.NetworkManager", "ActiveConnections")

for a in active:

 a_proxy = bus.get_object("org.freedesktop.NetworkManager", a)

 a_props = dbus.Interface(a_proxy, "org.freedesktop.DBus.Properties")

 uuid = a_props.Get("org.freedesktop.NetworkManager.Connection.Active", "Uuid")

 print "%s" % uuid

if len(active) == 0:

 print "No active connections"

I like Qt, how would I list all saved
network connections using it?
#include "NetworkManager.h"

void listConnections(QDBusInterface& interface) {

 QDBusReply<QList<QDBusObjectPath> > result = interface.call("ListConnections");

 foreach (const QDBusObjectPath& connection, result.value()) {

 qDebug() << connection.path();

 }

}

int main() {

 QDBusInterface interface(

 NM_DBUS_SERVICE,

 NM_DBUS_PATH_SETTINGS,

 NM_DBUS_IFACE_SETTINGS,

 QDBusConnection::systemBus());

 listConnections(interface);

}

How about a hot cellular positioning
example with geoclue?

GeocluePosition *pos;

GeocluePositionFields fields;

double lat, lon;

pos = geoclue_position_new ("org.freedesktop.Geoclue.Providers.Gsmloc",

 "/org/freedesktop/Geoclue/Providers/Gsmloc");

fields = geoclue_position_get_position (pos, NULL,

 &lat, &lon, NULL,

 NULL, &error);

if (error) {

g_printerr ("Error getting position: %s.\n", error->message);

goto done;

}

if (fields & GEOCLUE_POSITION_FIELDS_LATITUDE &&

 fields & GEOCLUE_POSITION_FIELDS_LONGITUDE) {

g_print ("We're at %.3f, %.3f.\n", lat, lon);

} else {

g_print ("Gsmloc has no location information.\n");

}

Questions?

