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There are three core parts of
Network Awareness...
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Am | connected at all?
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The How: what is the “cost”of a

packet?
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Consider security...
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And latency...
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The What: what am | connected to?
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The What: what am | connected to?
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Zones can help determine what apps
should do using general categories.
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The connection tells you how to access
the resources your app will use.
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Location awareness is knowing where
you are on a map.
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Each method of location positioning
has different constraints and varied
accuracy.
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You care about network and location
awareness because you care about
your users.

@ redhat %gmo

it



It's trivial for many applications to do
the smart thing.
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Firefox is currently in offline mode and can't browse the Web.

B Uncheck the "Work Offline” menu item, then try again.
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Location is the hot new thing in social

apps.
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Also keep the downside of location
awareness in mind.
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NetworkManager give your app the
network awareness it so desperately
wants.
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ModemManager prevents you from
cutting your eyes out with a dull
spoon.
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Most of the time you won't use
ModemManager directly, but through
a higher level framework.
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Getting network state with
NetworkManager is pretty trivial.

import dbus, sys
bus = dbus.SystemBus()

m proxy = bus.get object("org.freedesktop.NetworkManager",
"/org/freedesktop/NetworkManager")
manager = dbus.Interface(m proxy, "org.freedesktop.NetworkManager")

names = { 0: "unknown", 10: "sleeping", 20: "disconnected",
30: "disconnecting", 40: "connecting", 50: "connected locally",

60: "connected sitewide", 70: "connected globally" }

state = manager.state()
try:

print "State: %s" % names|[state]
except KeyError:

print "State: unknown"
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Also trivial using KDE's Solid
framework, If that's your thing...

If (Solid::Networking::status() == Solid::Networking::Connected)
{
kDebug() << "Networking is enabled. Feel free to go online!";

}

else

{

kDebug() << "Network not available.";

}
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Getting the list of active network
connhections is pretty easy too.

import dbus, sys
bus = dbus.SystemBus()

# Get a proxy for the base NetworkManager object

m proxy = bus.get object("org.freedesktop.NetworkManager",
"/org/freedesktop/NetworkManager")
manager = dbus.Interface(m proxy, "org.freedesktop.NetworkManager")

mgr _props = dbus.Interface(m proxy, "org.freedesktop.DBus.Properties")

active = mgr props.Get("org.freedesktop.NetworkManager", "ActiveConnections")
for a in active:
a proxy = bus.get object("org.freedesktop.NetworkManager", a)
a props = dbus.Interface(a proxy, "org.freedesktop.DBus.Properties")
uuid = a props.Get("org.freedesktop.NetworkManager.Connection.Active", "Uuid")

print "%s" % uuid

if len(active) ==
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print "No active connections" sum



| ike Qt, how would | list all saved
network connections using it?

#include "NetworkManager.h"

void listConnections(QDBusInterface& interface) {
QDBusReply<QList<QDBusObjectPath> > result = interface.call("ListConnections");
foreach (const QDBusObjectPath& connection, result.value()) {
gDebug() << connection.path();

int main() {
QDBusInterface interface(
NM DBUS SERVICE,
NM DBUS PATH SETTINGS,
NM DBUS IFACE SETTINGS,
QDBusConnection: :systemBus());

listConnections(interface); I Skto
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How about a hot cellular positioning
example with geoclue?

GeocluePosition *pos;
GeocluePositionFields fields;
double lat, lon;

pos = geoclue position new ("org.freedesktop.Geoclue.Providers.Gsmloc",
"/org/freedesktop/Geoclue/Providers/Gsmloc");
fields = geoclue position get position (pos, NULL,
&lat, &lon, NULL,
NULL, &error);
if (error) {
g printerr ("Error getting position: %s.\n", error->message);

goto done;

if (fields & GEOCLUE POSITION FIELDS LATITUDE &&
fields & GEOCLUE POSITION FIELDS LONGITUDE) {
g print ("We're at %.3f, %.3f.\n", lat, lon);

} else { Sktgp
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g print ("Gsmloc has no location information.\n");



Questions?
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