Network and Location Awareness in Your

Application
ig Deskto

Dan Williams
SuUum

There are three core parts of
Network Awareness...

g Deskto

summit

Am | connected at all?

g Deskto

summit

The How: what is the “cost”of a

packet?

g Deskto

sum

it

Consider security...

g Deskto

summit

And latency...

g Deskto

summit

The What: what am | connected to?

@ redhat ﬁgﬁo

it

The What: what am | connected to?

g Deskto

summit

Zones can help determine what apps
should do using general categories.

Work Public

g Deskto

summit

The connection tells you how to access
the resources your app will use.

2 &

@ redhat ﬁgﬁo

it

Location awareness is knowing where
you are on a map.

T TN e [T e = P T . S
: SNy %: R ooy T e VR TR IRt 5 e O S
gt Sl il ! o 1o Sl oo i AT .
. —— : ¥ A — =
STy T) o TR
" i " Ky e

Your mom Is here... [)eskto

summit

Each method of location positioning
has different constraints and varied
accuracy.

Slow but accurate Fast but inaccurate w
@ redhat Desktop

sum

You care about network and location
awareness because you care about
your users.

@ redhat %gmo

it

It's trivial for many applications to do
the smart thing.

File Edit View History Bookmarks Tools Help

&e @ S IL_J redhat.com V|(3'l [WV Wikipedia (en) Ql Qv * v

I{:‘L Problem loading page |[+] v

Z‘TS Offline mode

Firefox is currently in offline mode and can't browse the Web.

B Uncheck the "Work Offline” menu item, then try again.

X

Deskto

summit

Location is the hot new thing in social

apps.

g Deskto

summit

Also keep the downside of location
awareness in mind.

sumrr!?t

g Deskto

summit

NetworkManager give your app the
network awareness it so desperately
wants.

) rednat @igmo)

ModemManager prevents you from
cutting your eyes out with a dull
spoon.

sum

Most of the time you won't use
ModemManager directly, but through
a higher level framework.

©e,

g plasma

g Deskto

summit

redhat

Getting network state with
NetworkManager is pretty trivial.

import dbus, sys
bus = dbus.SystemBus()

m proxy = bus.get object("org.freedesktop.NetworkManager",
"/org/freedesktop/NetworkManager")
manager = dbus.Interface(m proxy, "org.freedesktop.NetworkManager")

names = { 0: "unknown", 10: "sleeping", 20: "disconnected",
30: "disconnecting", 40: "connecting", 50: "connected locally",

60: "connected sitewide", 70: "connected globally" }

state = manager.state()
try:

print "State: %s" % names|[state]
except KeyError:

print "State: unknown"

Skt%p

sum

Also trivial using KDE's Solid
framework, If that's your thing...

If (Solid::Networking::status() == Solid::Networking::Connected)
{
kDebug() << "Networking is enabled. Feel free to go online!";

}

else

{

kDebug() << "Network not available.";

}

I Deskto

SumnP

Getting the list of active network
connhections is pretty easy too.

import dbus, sys
bus = dbus.SystemBus()

Get a proxy for the base NetworkManager object

m proxy = bus.get object("org.freedesktop.NetworkManager",
"/org/freedesktop/NetworkManager")
manager = dbus.Interface(m proxy, "org.freedesktop.NetworkManager")

mgr _props = dbus.Interface(m proxy, "org.freedesktop.DBus.Properties")

active = mgr props.Get("org.freedesktop.NetworkManager", "ActiveConnections")
for a in active:
a proxy = bus.get object("org.freedesktop.NetworkManager", a)
a props = dbus.Interface(a proxy, "org.freedesktop.DBus.Properties")
uuid = a props.Get("org.freedesktop.NetworkManager.Connection.Active", "Uuid")

print "%s" % uuid

if len(active) ==

Sktgp

print "No active connections" sum

| ike Qt, how would | list all saved
network connections using it?

#include "NetworkManager.h"

void listConnections(QDBusInterface& interface) {
QDBusReply<QList<QDBusObjectPath> > result = interface.call("ListConnections");
foreach (const QDBusObjectPath& connection, result.value()) {
gDebug() << connection.path();

int main() {
QDBusInterface interface(
NM DBUS SERVICE,
NM DBUS PATH SETTINGS,
NM DBUS IFACE SETTINGS,
QDBusConnection: :systemBus());

listConnections(interface); I Skto

} sumnP

How about a hot cellular positioning
example with geoclue?

GeocluePosition *pos;
GeocluePositionFields fields;
double lat, lon;

pos = geoclue position new ("org.freedesktop.Geoclue.Providers.Gsmloc",
"/org/freedesktop/Geoclue/Providers/Gsmloc");
fields = geoclue position get position (pos, NULL,
&lat, &lon, NULL,
NULL, &error);
if (error) {
g printerr ("Error getting position: %s.\n", error->message);

goto done;

if (fields & GEOCLUE POSITION FIELDS LATITUDE &&
fields & GEOCLUE POSITION FIELDS LONGITUDE) {
g print ("We're at %.3f, %.3f.\n", lat, lon);

} else { Sktgp

sum

g print ("Gsmloc has no location information.\n");

Questions?

g Deskto

summit

